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PREFACE

The work described here was performed under the program for

analytical crashworthiness prediction at the Transportation

Systems Center sponsored by the Research Institute of the

National Highway Traffic Administration of the U.S. Depart-

ment of Transportation. This program is intended to provide

engineering data that can be applied to establishing regula-

tions relating to vehicle collision performance to improve

motor vehicle safety. The principal author, Dr. J. Rossettos,

Associate Professor of Mechanical Engineering at Northeastern

University, held a temporary appointment as a staff consultant

to the Transportation Systems Center during the summer of 1973.
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1. INTRODUCTION

Structural crashworthiness plays an important role in the NHTSA

mission. There are definite requirements for analytic models which

can serve as interpolation tools in conjunction with crash testing.

These simulation models can also serve as design feasibility and

evaluation tools.

The Transportation Systems Center has been asked by NHTSA

to provide support in the formulation and implementation of such

analytic models and computer programs in order to predict vehicle

crashworthiness. This support will include the acquisition, im-

plementation and extension of existing computer codes.

Some promising analytic tools are the Calspan- Shieh two-dimen-

sional frame analysis program, the Battel le-FMCCM lumped mass pro-
2 3gram, and the Lockeed three-dimensional KRASH program.

In recent years various simulation programs have been developed

to model the dynamic structural response under vehicle impact con-

ditions. The models vary from the very simple which can give only

average features of the overall response, to the rather complex,

where greater detail in the response can be provided. The simplest

form of analytic simulation to date has been embodied in simplified

spring-mass models with 2-3 lumped masses and less than ten

degrees of freedom, while generalized resistances are made to

represent gross vehicle structural properties. An example of

such models is given in Reference 4. Correlation with tests de-

pends heavily on making a judicious choice for the parameters which

measure the generalized resistances. Therefore, their use as pre-

dictive tools is limited although they can be used to establish

general behavior. A good example of the proper use of such models

is given in Reference 5.

The next step beyond the simplified spring-mass model exists
2

in the BCL simulation program. Four masses are represented

together with 35 individual nonlinear resistances. There is a

restriction to unidirectional motion. Judgment in the selection

1



of mass and resistance parameters is required, especially in

interpreting the crush data to be used for the six different

types of force-deformation curves which are available. Of

course, this offers a degree of flexibility to the user.

There are certain simulation programs which are labelled

as "hybrid" models because they require as necessary input, ex-

perimental crush data. ^ Correlation of the static deformation

mode with the dynamic mode is at present a very difficult problem,

so that extrapolation to other environments is not assured, and

again experience and judgment are important for any reasonable

prediction capability.

12 3 7
The next step in complexity involves the frame models ’ ’ ’

which are comprised of a large number of beam elements and lumped

masses. Increasing the number of degrees of freedom would, of

course provide increased ability for the evaluation of detailed

structural response of components in vehicle impacts. The simplest

of the frame models is the Calspan-Shieh program,'*' a two-dimensional

model which provides for elasto-plastic response by the use of

plastic hinges. The plastic hinge idea is, of course, a simplified

approach to yielding of a beam cross section since details of the

stress distribution over the cross section are not taken into ac-

count. Correlation with limited tests has been shown to be satis-
3

factory. Another frame model, KRASH program, was originally

developed for aircraft structure, and in principle, it can be made

to apply to vehicle impact. It can be regarded as an extension

of the BCL model, consisting of lumped masses connected by

straight beam elements, where each mass has three translational

and three rotational degrees of freedom. The codes can include

energy absorber devices and seat collapse mechanisms. The large

deformation characteristics are treated by piecewise linearization,

whereby the linear stiffness matrix is adjusted for plasticity at

each time step by multiplying by a stiffness reduction factor.

This factor is determined from static crush data, so that again

experimental difficulties similar to the Kamal model^ exist, since

static and dynamic mode behavior is not easily correlated.

2



A more general element frame model is the three-dimensional
7

^

CRASH program, which contains additional features not found in

the last two models. No prior assumption on the locations of

plastic hinges is required. Moments and forces at the nodes

are computed by numerical integration of the stress distribution

over the cross section. The actual stress - strain behavior of the

material may be used directly but the stress state must be monitored

at various locations accross the cross section. It is clear that

the additional effort and computer time required for this program,

still does not allow prediction of detailed vehicle response much

beyond the capability of the previous two models. This is because

the frame concept cannot really model an entire vehicle body, and

also since local deformation of the cross section and joint inef-

ficiency are not accounted for.

TSC and the University of Michigan under NHTSA contract con-

clude that there is a need for a hybrid finite element program,

which would, for instance, incorporate shell, frame, lumped

parameter and finite difference models. These models would in

fact form modules for the overall program, where each module can

be regarded as a "super - element" . It should be pointed out that

the use of various simulation programs will be dictated by the

particular impact situation to be modelled. For instance, in some

low speed impact situations where the bumpers alone may be involved,

the simple BCL model, or in combination with the Cal span - Shieh

model may be sufficient to handle the significant features. In

any case, it is clear that the three-dimensional frame structure

will form an important module, and it will be the main concern of

the present report. Figure 1-1 shows a typical vehicle where some

of the module representations are indicated. A spring suspended

large mass which may be the engine is shown, together with sup-

porting frame and plate and shell portions.

TSC has become familiar with the Calspan model and has

simplified the input to the two-dimensional program, so that

it can be run by personnel with little knowledge of the de-

velopment details. The present report summarizes the analytic

requirements for extension of the Calspan two-dimensional frame

3



to a three-dimensional frame. A future document will discuss the

programming requirements for implementing the analytical develop-

ment. Program modifications made by TSC to expedite usage by

engineers will also be described.

Figure 1-1. Hybrid Vehicle Model

4



2 , ANALYSIS OF THE THREE-DIMENSIONAL FRAME

The three-dimensional frame is a necessary module, since it

is possible with it to simulate at least the significant features

of the large dynamic plastic deformation and geometry changes of

the vehicle. This is done by means of an appropriate breakdown

into straight beam elements which are connected at nodes, with in-

ertial effects treated by means of lumped point or rigid body

masses at the nodes.

With a sufficient number of beam elements and nodes, one

should be able to obtain in adequate detail, displacement and

acceleration time histories of nodal positions which represent

relatively important points in the vehicle structure, including

of course the three-dimensional motions of the occupant compart-

ments. By combining this information with up-to-date biomechanics

data, one can evolve an estimate of crashworthiness in a particular

environment

.

By use of the frame model, the basic overall structural

dynamic response phenomenon can be identified. Therefore with

some experience and careful interpretation, it can also be used

in a very important way to establish the usefulness of any

selected experimental parameters in taking and using test data,

so that costs of tests are minimized.

In order to define the various quantities to be used in the

analysis a hypothetical frame is shown in Figure 2.1. It should

be clear that in this figure not all nodes and elements are neces-

sarily shown. This is to avoid cluttering the figure, since its

purpose is mainly to define nomenclature.

With reference to Figure 2-1 the following definitions are

used

:

Nodes - are fictitious bodies to which two or more beam

elements may be connected. The end of each element con-

nected to a particular node takes on the displacements and

rotations of that particular node. Plastic hinges and

5



Figure 2-1. Frame Geometry and Notation
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external forces may be concentrated at nodes. Lumped masses

may or may not be assigned to a node. For instance, the

locations numbered 1, 2, 3, .... 24, are nodes. The solid

circles have assigned lumped masses while the hollow circles

do not. In a three-dimensional analysis there are six degrees

of freedom per node, so that for n nodes a system of 6 n

equations would need to be solved.

Beam elements - are uniform straight members connecting two

nodes. In Figure 2-1 beam elements are denoted by the

circled numbers (i.e.,©.©.® )•

Beam members - are actual beams which make

They differ from beam elements in that two

can occur on a beam member. For instance,

the lines between nodes 2 and 12 and nodes

beam members.

up the frame,

or more nodes

in Figure 2-1,

12 and 16 are

The physical assumptions of our model are essentially those adopted

in the CALSPAN model of Reference 1. The implications of these

assumptions are as follows. All plastic deformation is to occur

at the nodes of our beam element. The location of hinges must be

chosen a priori, and this gives the lengths of our elements. The

plastic hinge is operative when appropriate stress resultants and

bending moments lie on a given yield surface for the cross section.

Perfectly plastic behavior is assumed so that material strain

hardening is neglected. Also, the stress resultants at the cross

section at initial yield are not significantly different from those

at the fully plastic section. Finally, the frame structure may

undergo large rigid body translations and rotations. These

assumptions are felt to be reasonable for mild steel, thin

members, and vehicle type frame loadings.

In the analysis, the matrix displacement method of frame

analysis is to be used, and the dynamic problem is reduced to a

nonlinear initial value problem, which is governed by simultaneous

second order differential equations in time. The solution is car-

ried out incrementally, and the coefficients of the 6 n dependent

variables (n = number of nodes in the frame) are updated at each

7



time increment to take into account the possible initiation of

either a new plastic loading or unloading condition at some of

the nodes. This means that the stiffness matrix, which will be

defined shortly, is to be modified at each time step.

In the next few paragraphs, we will define the coefficients

which enter into the equations of motion and the dependent

variables whos.e solution is sought. Since the basic building

block of our model is the beam element let us first describe

the forces acting on it at the nodes, and the resulting deforma-

tions and displacements which it experiences.

If we imbed a local coordinate system at each end face (or •

node) of the element, we can describe large rotations (rigid body

and deformation type) of the beam elements and their nodes by

studying how such local coordinate systems translate and rotate

with respect to a fixed (global) system. In regard to Figure 2-2

line 1 joins the beam element end points (or nodes) at faces "a"

and "b". The global coordinates of nodes a and b are X^
, ,

Z^

and X
2

,
Y ? ,

Z
2 ,

respectively. The quantities N and M are stress

resultant and moment vectors. Note that from here on a wavy

symbol under a letter will denote a vector or a matrix, and will

be clear from the context. In Figure 2-2 (b) 1 is a unit vector
~3

along line 1, and x y z are principal axes of the beam at

face a, where x o is normal to the beam face. We define x„
, y

z. as mutually perpendicular unit vectors in these directions
~3

respectively. Quantities to be referred to the local beam face

coordinate system will be written in terms of these unit vectors.

For instance, the moment vector when written as M = Tx +M v +M z
~ ~ 3 y ~ 3 Z ~ 3

yields the torque T about the local x axis and the bending

moments and M
z

about the local y a
and z

a
axes, respectively.

In Figure 2-2 (b ) the quantities 6
, (p , <p are rotations of

a. y l,

the local beam face coordinate system about the global axes X, Y,

Z. The angle 0 involves beam bending deformation. Later we

will be interested in the increments A0 and A0 which are
y z

incremental bending deformations of the beam about the local

(y,z) axes due to the moment increments AM and AM respectively
y z



2

X

z

Figure 2-2 a,b. Beam Element Orientations
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Associated with the torque T about the local x axis is the twisting

deformation which is denoted by ip in what follows. Also, associated

with the axial force, N, acting on the beam element is the elonga-

tion 6.

2.1 STIFFNESS RELATIONS

With the notation just described, one can write the incremental

stiffness relation for the ith beam element. In matrix form, this

can be written as

A5i
=

Ii A?i (2 - 1}

where

beam element

( 2 . 2 )

i

The beam element stiffness matrix, g^, depends on whether the

element nodes are elastic or plastic. The procedure in Reference 1

can be used to obtain the following values for g^:

AS- are increments in internal loads acting on the

g^ is the element stiffness matrix

AR^ are increments in the deformation quantities

so that for element, i, we have

A0

AR.
~ l

A0

A0

A0

A6
<

Axp

ay

az

by

bz
\Si

AM

AM,

AM

AM

AN

AT

ay

az

by

bz
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For elastic behaviora

.

4EI
--

o

2EI
y

0

4EI

nr

o

2EI.

2EI,

4EI

o

2E1.

£

o

4EI.
o

AE
£

o
GJ
£

(2.3)

b

.

For a plastic hinge at the "a" end

o

o

3EI,

t

o o

o o

3EI

AE
£

(2.4)

11



c. For a plastic hinge at the "b" end

Iei

£
y o

3EIV
o o

o o

o

AE
£

o

(2.5)

d. For a plastic hinge at both ends

li
=

o o

o o
( 2 . 6 )

AE
£

We next define the G matrix which relates increments of the

deformation quantities to the increments in internal loads for

all elements of the frame, so that

AS = GAR
(2.7)

12



where, for a frame having a total of n^ beam elements,

AS

a _

( 2 . 8 )

Finally, it is necessary to relate the deformation quantities for

an element to the displacements of the two nodes of the element,

and rotations of the faces at these two nodes about the fixed

(global) axes. These displacements and rotations comprise the

total degrees of freedom for each element. There are six degrees

of freedom at each node, and therefore, twelve degrees of freedom

for each element. For n^ elements, we have 12 n^ equations of

motion. Specifically, for purposes of solving the equations in-

crementally, we wish to express the increments in the deformation

quantities, AR, to the increments in displacement quantities, Au,

which are the changes in end point (nodal) locations and rotations.

This is done in Section 3, where for a given element, i, a compat-

ibility matrix is determined, so that the following relation

holds for element, i.

AR C • Au

.

~i ~ l
l

Au •

~ l
(2.9)

6x12

where

r A 6 A0 A0, A0,_ A 6 AiJ;

L ay az by bz (2.9a)
l

13



and

The superscript, T, denotes the transpose of a matrix quantity.

By appropriately assembling the results for all elements of the

frame, one arrives at the result

In Section 3, the C- matrix will be determined, but in that section

the subscript i will be dropped for convenience, since all work in

Section 3 refers to an element.

With regard to the equations of motion, the 12 degrees of free

dom given in Equation (2.9b) will comprise the dependent variables

for each element. The total number of dependent variables for the

entire frame is then equal to the dimension of the vector Au in

Equation (2.10b). We now wish to establish the relevant equations

of motion, which are to be solved for the quantities Au.

2.2 EQUATIONS OF MOTION

It is convenient to develop the equations of motion by first

deriving the stiffness matrix for the associated statics problem

and then using the concept of the d'Alembert force to account for

inertias. For the statics problem, the appropriate stiffness

AR = CAu
( 2 . 10 )

where

AR

!

(2 . 10a ,b ,c)

14



relation to be used for our purposes can be written as

AP = KAu ( 2 . 11 )

where K is defined as the stiffness matrix of the entire frame

and the generalized displacements, Au, are given by Equation (2.10b).

The vector AP is the incremental generalized external loading

vector, so that at each node the concentrated loads correspond to

a particular degree of freedom in Au. The stiffness matrix, K, is

now derived by means of the principle of virtual work. If, for a

virtual displacement pattern 6u, we equate the internal virtual

work to the external virtual work, this gives

T T
6R S = 6u P

On using the variational form of Equation (2.10), this becomes

6u
T

C
T

S = 6u
T

P (2.12)

T
For arbitrary Su, this implies that P = C S. On taking increments,

get

AP = C
T
AS (2.12a)

Then, on using Equations (2.7) and (2.10) so that AS = GCAu,

Equation (2.12a) becomes

AP = C
T

GCAu (2.13)

When Equation (2.13) is compared to Equation (2.11), it is clear

that the stiffness matrix K is given by

K = C
T

GC (2.14)

Now, to provide internal force deformation relations

elasto-plastic state in a typical time interval x <t<x7 p— p+1
internal forces S(t) and deformations R(t) are written as

sum of their value at x^ plus an additional increment, so

for an

the

the

that

15



SCt) = S(T
p

)
+ AS (t

)

(2.15)

R(u) = R(u(t
p
)) + AR(u) (2.16)

where for an elasto-plastic material the deformation increment, AR,

consists of two parts (i.e., elastic Ae and plastic Ar) so

AR = Ae + Ar (2.17)

where the Ar vanish if the structure is in an elastic state.

At this point, the incremental equations of motion are derived

by starting with the incremental statics result

C
T
AS = AP (2.18)

which is established from the intermediate virtual work result
Tgiven by Equation (2.12a), by regarding 6u arbitrary at that

stage and going through the same argument which led to Equation

(2.14). In Equation (2.18) we have

AS = S(t) - S(t
p

) (2.19)

AP = P(t) - P(x ) (2.20)

On using Equations (2.18), (2.19), and (2.20), we can write

C
T
S(t) - C

T
S (x

p
)

= P(t) - P(t
p

) (2.21)

In Equation (2.21), since S (x
) and P(t ) ate constants in the

~ r ^ r

interval they cannot be related to anything that is a function of

time, so we can deduce from Equation (2.21) that

P(x )
= C

T
S(x ) (2.22)

~ P ~ ~ P

16



Equation (2.22) relates the external loads at the pth time step,

P (x ) ,
to the compatibility and internal force matrices C and S

respect lively
,

at the t = x . On using Equations (2.20) and (2.22),

Equation (2.18) can be written as

C
T

AS - P(t) - C
T

S(x ) (2.23)

Now, if we add a d'Alembert force, -MAu =-Mu, (note that if

u(t) = u(x )
+ Au(t), then ii(t) = Au, since u(x ) is constant) to

~ ~ P ~ ~ ~ P
the right hand side of Equation (2.23) the equation of dynamic

equilibrium can be established. This equation of motion can then

be written in the form

MAu + C
T
A S = P(t) - C

T
S(x ) (2.24)

where M is a diagonal lumped mass matrix.

Now, at the initiation of the pth time increment (i.e., at

t = tp ) the matrices G and C are updated (to account for elastic

or plastic action as the case may be, and for geometry changes),

and denoted by G*-
P ^ and C^ P ^. Then, from Equations (2.7) and (2.10)

we have

AS ( t )
= G

fp) AR(u) - G^C^Au (2.25)

Next, the vector Q (x ) is defined by

T
Q(x

p
)

= - [C (P)
] S(T

p
) • (2.26)

Using updated quantities as defined in Equations (2.25) and (2.26),

Equation (2.24) becomes

MAii + K^Au = P(t) + Q (x )

where the updated stiffness matrix is

K tp) _ G ( P } C ( P }

(2 . 27)

(2.28)

17



3 . THREE-DIMENSIONAL COMPATIBILITY MATRIX

As discussed in Section 2, the compatibility matrix, C, relates

the increments in the local beam element deformation quantities,

AR, to the changes in nodal (beam element end points) locations and

rotations, Air
,

so that

AR = CAu (3.1)

where

AR
6x1

C = :cid 6x12

The elements C— are determined in this section. The notation

indicated in Figure 3-1 will be adopted in what follows.

In Figure 3-1, x . y , z are mutually perpendicular unit

vectors along principal axes at face "a", where x
a

is normal to

face "a" (similar considerations apply to face "b") . The unit

vector l on face "a" is in line with the line joining the nodes

at a and b. One task is to find the changes in bending components,

A0,ro ,
A0

,
about the local y„ ,

axes due to small rotations

A<j>
x ,

A (py, A
<f>

z
of the local beam face coordinate system,

(x
, y , z ) about the fixed (global) axes, and small changes

~ d ~ 3- ~ 3.

18



in locations of the beam element nodes, AX^, AY^, AZ^, AX£
,

AY
? ,

referred to global (X,Y,Z) axes. The subscripts 1 and 2 refer

to nodes at face "a” and "b", respectively.

We will now show how the bending deformation angle increments,

A0 and A0 (which are caused by bending moment increments AM
ya za v / & ay

and AM
;

see Figure 3-2) are related to A£ and A£ which are
3 z a. z a.y

incremental components of changes in the £ vector.
~ 3.

With regard to Figure 3-2, since x
, y ,

z are unit orthogonal

base vectors of the local face "a" coordinate system, we can write

£ = £ x +
~a ax ~a £ y +

ay ca £ z oaz ~a (3.2)

Then

1 sin0 = (£ ) x (x ) = (£ x + £ y + £ z ) x (x )a K-a J v ~a^ v ax~a ay la ~az - a } K ~a J

= & r (y„ x xj + £ (z x x )ay a - a^ az v~a ~a^

But

y xx = - z and z x x = yla ~ a ~ a ~ a ~ a la

So that with respect to the local system

1 s in0 £ z 0 + £ yay ~a az la (3.3)

where 1 is a unit vector in the z y plane. Taking the

differential of both sides of Equation (3.3) and setting d0,
<

dt
ay

’ Al
ay’

and d£
az

= A(
az

we have

A6
a .

cos0 A0
a ~ a

A£ay ?a
+ A£

a ?a (3.4)

where A0 =1 A0 This result can be written in matrix form as
~ a ~ ~ a

follows
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Figure 3-1. Face Local and Global Axes with Rotations

Figure 3-2. Beam Element Deformation
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(3.5)

Therefore, as was to be shown, the deformation angle increments

are given by the z and y o components of ASL multiplied by the

factor l/cos0
a

. Similar considerations are used at node b for

A0^ (see Figure 3.2), and in this case, cos©^ would be involved.

The increments A£ and A£ are defined so that A£ = d£ .

za ya ~a a

Therefore, the next step is to obtain the total differential of

&
a

in terms of the quantities in the Au vector. The reason for

this is to enable one to express some of the deformation quantities,

namely A0^
a

and A0
za ,

terms °f Au, and in this manner make con-

tributions to the compatibility matrix C defined in Equation (3.1).

In order to obtain d£ for our purposes, it is convenient to

begin by defining the transformation i = T£„ where the components

of are with respect to the global (fixed) coordinate system,

while £ is the unit vector coordinatized in the a-face frame
~ a

x o , y , z so that
a ’ 7 a ’ a

and, T, which is the matirx of direction cosines, is given by

cos (i,x )
~ ~a

A
cos (3 ,x )

A ~ ct

/\

cos (k,x )
/V

~ d

"

T
ll

T
12

i

hOrH
H

T = cos (i,y
a ) cos (j ,y a ) cos (k,y

a )
= T

2

1

T1
2 2

T
23

cos ( i ’5a^1
cos (j ,

z

a ) cos (k,

z

& ) T
3

1

T1
32

T
33 _

(3.7)
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Figure 3-3 shows some of the angles in the T matrix, where i, j, k

are unit vectors in the global (X, Y, Z) directions. Other
A

angles not shown in Figure 3-3, such as (i, y ) which is the angle

between the global X axis and the local y axis, are defined in a

similar manner.

Note that £ and £ are the same vector described in different
~ i ~ a.

coordinate systems. Now, in terms of the global coordinates of the

beam element nodes (i.e., X^

,

Y-^, and X
2 , Y

? ,
Z
2 ) ,

one can ex-

press £
r

as follows

, 1 ? ? 7 1/9
where |L| =

[ (X
2
-X

x ) + (Y
2

-

Y

1 ) + (Z
2

-

Z

1 ) ]

'

So that

(3.8)

The constant matrix D is defined as

-1 o o 1 o o

D o -1 o o 1 o

o o -

1

o o 1

Then £ can be written as
~ a

~ a
£ (3.9)
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Figure 3-3. Direction Cosine Angles
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where

X (3.9a)

The next step is to take the total differential of £ , as £ varies

with the variations of the independent quantities which are the

elements of the Au vector. This means that

T D dX (3.10)

We now evaluate the three terms on the right hand side of

Equation (3.10). In regard to the first term, note that

represents a scalar change in length of the beam element. Since

L
2

= (X
2
-X

x
)

2
+ (Y

2
-Y

1
)

2
+ (Z

2
‘
Z x

)

2

d £ =
- a

1

TlT
T D X +

1

TlT
dT D X +

Then

2LAL=2 (X
2
-X

1 ) (AX 2
-AX

1
) + 2 (Y

2
-Y

1
) ( AY

2
- AY

X )
+ 2 (

Z 2
- Z

1 ) (AZ^AZ^

(3.11)
So

AL= [(X
2
-X

1
)(AX

2
-AX

1
)+(Y

2
-Y

1
)(AY

2
-AY

1
)+(Z

2
-Z

1
)(AZ

2
-AZ

1 )]

(3.12)
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And

,

(3.12a)

Or

D A X (3.12b)

where X is defined in Equation (3.9a). Finally, the first term in

the total differential of i becomes
~a

d
(p7[)

T D X = " 3 X
T

D
T
DA X T D X (3.13)

—T T — •

Since X D DAX is a scalar, Equation (3.13) can be written as

d
(]rr) I ? ?

T D X X
T

D
T

D A X (3.14)

In order to evaluate the second term in Equation (3.10), we must

determine dT which indicates how the transformation matrix T

changes with rotations of the face or local coordinate system with

respect to the fixed system. With regard to face "a", it is

shown in Reference 8 that one can write

AT = T (3.15)
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where

0 Aha
- Av

9a
= S

*za
0 4

»xa (3.15a)

A(J>_ rya
‘ Aha o

The second term in Equation (3.10) is then

[

L|

dT D X “ d T 9,

|

L
|

z ~ a
D X . (3.16)

This can be written in terms of $ where
~ a

= [A<J> A<J) A 4> ]L xa ya Y za J

So that

-ri-r d T D X = -J-T- T X* $
|

L
|

~ ~ —
|

L
|

~ — ~a

Where

X*

o - ( Z 2
'Z

1 ) ^ Y 2' Y 1')

(Z
2
-Z

1 ) o (X^X^

-(Y
2
-Y

1 ) (X
2
-X

1 ) o

(3.17)

(3.18)

(3.19)

Note that although $ denotes quantities referred to face "a",
~ a.

similar considerations hold for face "b". Finally, the last term

in Equation (3.10) is taken as
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(3.20)

By combining the results in Equations (3.14), (3.16), and (3.20)

d£ can be obtained, and if we set d£ = A£ where
~a ~a ~ a

Al
a = (3.21)

the quantities Al and Ail can be found in terms of Au.H ay az

Another component of the beam deformation is the increment

in the change in length of the beam element, A6, which is given

by the quantity AL in Equation (3.11). If we set A6 = AL and

use previous notation, we can write,

1 _T T —
A6 = X

1

D D A X (3.22)

where

The expression for A6 as given by Equation (3.22) is in the desired

form, since it is given in terms of the changes in the locations of

the beam element nodes, AX.
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The remaining component of the deformation involves the twist

angle \p between the two faces of the beam element as shown in

Figure 3-4.

In order to compute this angle, some preliminary considerations

will first be indicated. If v is an arbitrary vector then

where v
a

contains components of v with respect to "a" face local

coordinates (x
& , ya , z ) ,

and v
r

contains components of v with re-

spect to the global X, Y, Z axes. Similarly, we have

v, Sv

where v^ contains components

coordinates (x^, y^ ,
z^) . T

From Equation (3.21) we have

Equation (3.20) get

of v with

and S are

rr
= ~?T

yb

respect to face "b" local

transformation matrices,

so that on substitution into

v
~ a

T
T S v,

Now, the angle between the y-axes (or z-axes) of the two beam

element face coordinate systems is an indication of the twist

angle ip

.

Next, select the y^ axis (y-axis on b face) to be our

vector, v. Then on applying Equation (3.22) get

Equation (3.23) then becomes

(3.23)

a unit vector by definition.
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Figure 3-4. Twist Angle Between Beam Element End Faces
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Where

(3.24)

H (3.25)

Now,

s inf
| Wa x

[lb,
(3.26)

Where

I f
is assumed small and can

X i

yields

la * yb
3z

la (3.26a)

be neglected, then Equation (3.26)

simH = |yba (y a
x z

fl
)

|

(3.27)

So that yb is the magnitude of simp which is also equal to

z ^
or the (3,2) term of T S (as seen from Equations 3.24, 3.25 and

3.27). Hence

,

simp = (3,2) term of T S (3.28)

However, since we are interested in the increment Aip rather than
Tsimp itself, we must take the total differential of H or T S .

If we take the differential of both sides of Equation (3.28), we

get

cosipdtp = (3,2) term of d(T S^) . (3.29)
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If in addition, we set Aip = d^ we have

Alp =
3-5^7 [( 3

>
2 ) term of d

^T
s
T
)]. ( 3 . 30)

T
We now proceed to evaluate dH = d(T S ).

dH = d (T S
T

) = (dT) S
T

+ T d(S
T

)

But

,

dT = Tfi
a

and dS
T

= (dS)
T

= S
T

where was defined in conjunction with Equation (3.11) Therefore

d(T S
T

)
=

J
S
T

+ T flj S
T

. (3.31)

T
The (3,2) term of d(T S ) is obtained by performing the appropriate

matrix multiplication indicated on the right hand side of Equa-

tion (3.31) and keeping track of those operations which contribute
T

to the (3,2) term of d(T S ). The result can be written in the

form

(3,2) term

of d(T S
T

)

where

A
6 -

T c _t Q
1 32z3 1

33 z 2

T
33

S
2l"

T
31

S
23

T
31

S 22~ T
32

S
21

T
33

S 22~ T
32

S
23

= ~ A
1

(3.32)

31



Since we can now express all quantities in the AR vector in terms

of those in Au
,
the C matrix in Equation (3.1), which is a 6 X 12

matrix can now be assembled from our previous results by adding all

relevant contributions into their proper locations. The compatibil-

ity matrix, C is denoted as follows:

C
11

C
12

C
1

3

r rc
2i ^22

C r
1,11

l
1,12

r
z

,
1 2

C (3.33)

r
,
1

2

The elements of C are given in the following section.

3.1 ELEMENTS OF C MATRIX

The elements of the beam element compatibility matrix C will

now be presented. The following quantities are first defined

for convenience:

1
II

X2
1

, - 1
(3.34)COS0 ’

a
cos6^ ’

l

c COSlfl

X 2' X
i»

Y
2

1

Y
2

" Y
1 ’ Z

2

1

Z
2

~ Z
1

(3.35)

< X 21
+ Y

2
H-

21
7
2 . 1/2

^
21 J (3.36)

The elements of C are then given as follows:
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C
11

j
L | 3 (

T
3

1

X
2 1

+ T
3 2

Y
21

X
21

+ T
33

Z
21

X
21

T
31

X
a

C
1 2 | T i3 (

T
31

X
21

Y
21

+ T
32

Y
21

+ T
33

Z
21

Y
21

32 a

C
13 T7T3 (

T
31

X
21

Z
21

+ T
32

Y
2

1

Z
2 1

+ T
33 Z

21)-
T
33

A
a

C
14

" " C
ll

f = - ru
15

l
12

C
1 6

" C
1

3

'17 JEJ ^ T 32
Z
21

T
33

Y 21')

'18 TLT
(-
T
33

X
2l"

T
31

Z 21^)

'19
| L I

(T
31

Y 21' T
32

X 21^

C
l,10 0

C
l,ll

0

C
1

,
1

2

0
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+c

c

c

c

c

c

c

c

c

c

c

c

c

c

A

21
|L

A

22
|L

A

23
|L

24
" C

2

1

25
" C

2 2

26
~ C

2 3

A
a

27
1

L
|

A
a

28
|L|

A
a

29
|L|

2,10
= 0

2,11
= 0

2,12
= 0

A
b

31
1

L|
3

x
b

32
ILI

3

T
2

1

X
2 1

+ T
22

Y
21

X
21

+ T
23

Z
21

X
21

T 21
X
21

Y
21

+ T
2 2

Y
2 1

+ T
23

Z
21

Y 21

T
21

X
21

Z
21

+ T
22

Y
21

Z
21

+ T
23

Z
21

('
T
23

Y 21' T 22
Z
21 )

(T
21

Z 21‘ T 23
X
21 )

^ T 22
X
21

-T
21

Y 21^

S
31

X
21

+ S
32

Y
21

X
21

S
31

X
21

Y
21

* S
3

2

Y
2

1

S
33

Z
2

1

X
2

1

S
33

Z
21

Y
21 /

+

T
21

X

T
22

X

T
23

A

a

a

a

X
b
S
31

|

L
|

X
b
S
32

I
L

|
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A
b

33
1

L|
3

34
" C

31

35
" C

32

36
" C

33

37
0

38
0

39
0

S
31

X
21

Z
21

+ S
32

Y
21

Z
21

+ S
33

Z 21^

r
3 ,10

. H
|L

cU
3 , 1

1

_
x
b

1

L

C
3 , 1 2

X b

1

L

X.

C
41

1

L

X,

C
4 2

|L

X-
ii

fO
u

1

L

C
44

- C
41

C
45

' " C
4 2

C
46

* ’ C
43

^ S 33
X 21" S

31
Z 21^

( S 31
Y
2i-

S
32

X
2 i)

3 (
S
2

1

X
2 1

+ S
22

Y
21

X
21

+ S
23

Z
21

X 21^ +

3 (
S
21

X
21

Y
21

+ S
2

2

Y
2 1

+ S
2

3

Z
2

1

X 21^

I
3 (

S
21

X
21

Z
21

+ S
22

Y
21

Z
21

+ S
23

Z
2l)

+
, 7|

3
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0

0

0

C
4 , 1

0

C
4 , 11

C
4 ,

1

2

^ S 23
Y 21' S

22
Z 21^

yyy
( s 2i

z 2r s
23

x
2i^

jyy
^ S 22

X 21" S
21

Y 21')

c

c

c

c

c

c

c

c

c

c

51

52

53

54

55

56

57

61

67

68

- x
21

/|l|

- y
21

/|l|

- z
21

/|l|

C
58

= C
59

= C
5,10

= C
5 , 1 1

= C
5 , 1

2

C
62

= C
63

= C
64

= C
65

C
66

= 0

X
c
fT 32

S 23' T
33

S
22 )

X
c^

T
33

S 21" T
31

S 23^

0
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C 69
= X

c
(T

31
S 22' T

32
S 21 )

C
6,10 = -C

67

C
6 , 1

1

= ' C
68

C
6 , 1 2

= ~ C
69

where T — and S — are the elements of Transformation matrices T,

S defined in the text.

In order to determine A A, and A
,
we need cos0

,
cos0 K and

3 D C 3D
cosijj. They are calculated as follows:

a. For cos0
,
from Equations (3.2) and (3.8) of text,

3

cos0 = SL • x = £
a ~a ~a ax

[T
11

X
21

+ T
1

2

Y
2 1

+ T
1 3

Z
2

1

Similarly

COS0 [S 11^71 + S-| 7 Y 7 i
+ S, -,1

b
|
L |

L 11 21 12 21 1321

b. For cosip, from Equation (3.26a) of text.

cos^ - y • (y, ) = y = (2,2) term of T S
T

y
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4. YIELD CRITERIA UNDER COMBINED LOADS

As the incremental solution of the equations of motion

(Eq. 2.27) proceeds, the vector Au- , for element i, is calculated

at each time step. The increments in internal force quantities,

AS^, for element i can be determined by using Equations (2.1) and

(2.9) to get

ASptO = g)
P) c(P) Au

i
(t) (4.1)

In Equation (4.1), gT is the element stiffness matrix which can

take on any of the forms given by Equations (2.3) - (2.6), depending

on whether elastic or plastic behavior exists. The superscript, p,

refers to updated values at the pth time step. The cumulative

values of the internal forces of element i at the pth time step

are then given by

Si(t) = S.(t
p

) + AS
t
(t) (4.2)

where

S
T

= [M M M. M, N T]
~i 1 ay az by bz J (4.3)

At a given node of element i the bending moments M and M
, the

y z

stress resultant, N, and the torque T are the quantities of in-

terest in any yield cirterion, where they may take on critical

values

.

For the loading under discussion, it should be possible re-

present the yield criterion in the general form

where C
q

is an appropriate constant, and the starred quantities

represent fully plastic or yield values. The specific form of the

function, f, will depend on the geometry of the element cross
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section, the particular loads which are assumed to be chiefly

effective in yielding the member, and the kind of local deforma-

tion which is likely to occur (this is, of course, difficult to

predict, since the orientation of the forces cannot be known

a priori). Rather than attempt to develop a general criterion,

it appears more reasonable to derive criteria which would be

specialized for the particular configurations under study, and

for which there may be experimental data available for possible

empirical contribution to the form of f.

Some simple examples of possible yield criteria are presented

here only for purposes of giving an exposition of what kind of

criterion is being sought. For instance, for a rectangular

cross section beam under combined bending in one direction

(M only) and axial loading, N, bent its plane of symmetry

(h - beam thickness, b - beam length), the following yield
gcriterion can be dervied.

the yield stress. For the

a method similar to the

a yield criterion where

in the form

(4.6)

O ft

where = a bh /4, N = c^bh and a
^

is

same rectangular cross section, by using

approach in Reference 9, one can derive

the two moments M and M are dominant,
l y

= 1

Results for thin walled sections involving M and M can also beb z y
obtained in a similar manner. Note that in these cases, including

* a
that of Equation (4.6), M and M would need to be defined

z y
appropriately

.

Bounding methods can also be used to obtain simple lower

bound yield loci which are approximately independent of cross

section provided we deal with thin walled box sections or some

types of I beams. For instance, by use of the convexity theorem
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and other arguments ,
one may obtain the locus in T, M space which

provides a safe combination of bending moment, M, about a "natural"

or "preferred" axis, and torque, T. A pure torsion analysis pro-

vides two points on the yield locus T*, o) while pure bending

analysis gives the two points (+. M*
,

o) if we suppose no buckling

in compression and no Bauschinger effect. The fully plastic

moment M* is proportional to the yield strength, a . Note that if

we denote M as the moment when the outer fiber just reaches the

yield stress, then M* = M^p where the constant is a shape

factor which ranges between the values of one and two in most

practical situations, and is closer to one for thin walled box

sections. The four points (+_ T*, o) and (+_ M*
,

o) can be connected

to form a quadrilateral as shown in Figure 4-1. The convexity

theorem implies that the quadrilateral locus in Figure 4-1 is

"safe" since it represents a curve closest to the origin without

being concave anywhere. The quadrilateral, therefore, represents

an "inner" bound on the true T, M yield locus, and applies whatever

the cross section shape of the beam.

One can improve on this lower bound in T, M space by the

following arguments. For the torsion problem assume shear

stresses of magnitude k oVer the cross section are in equilibrium

with T*; then lower proportional stresses of magnitude Ak are in

equilibrium with torque AT*. Similarly, bending stresses, yo^ are

in equilibrium with bending moment yM* (note that this is approxi-

mate in the sense that M* is nearly equal to M for thin walled

sections). Therefore, if the combined stresses Ak and ya^ under

say the von-Mises criterion do not exceed yield, then the loads

(AT*, yM*) will be "safe". The von-Mises condition for our case

gives

(4.7)

where x is the shear stress and

perpendicular to the beam axis.

a is a bending stress

Here, x = Ak and a =

on a plane

ya so
y
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Figure 4-1. Yield Locus for Combined Bending and Torsion

41



Equation (4.7) gives

A
2

+ y
2 = 1 (4.8)

and since by definition, A = T/T* and y = M/M*, Equation (4.8)

gives

2 2

The ellipse represented by Equation (4.9) is shown in Figure 4-1,

and encloses more area than the quadrilateral. Equation (4.9) is

probably a good approximation for thin walled box beams, especially

when the outline of the cross section is closer to being square.
2 2 1/2The magnitude of M could be given by (M + M ) as an approxima-
y z

tion for general unsymmetr ical bending.

In a future documentation, which is concerned with computer

assumptions would need to be made for the various types of beam

members which exist, also taking into account the fact that the

response depends heavily on the expected loading geometry and

sequence

.

In Section 2 of this report, which is concerned with computer

implementation, Equation (4.9) will be used in the form

For thin walled sections the phenomenon of local buckling, or

crippling, is a very real possibility. How to take the gross

effects of local buckling into account in a simple manner is still

under investigation. As a rough approximation, rather than use the

force deformation curve shown in Figure 4-2a, the local buckling

effect may be incorporated into the analysis by use of the curve

shown in Figure 4-2b, where the sudden drop in load is indicated

in the otherwise simple elasto-plastic response. Loading and un-

loading paths will now be based on the reduced load capacity
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(i.e., lower yield strength). Reduced stiffness caused by a

smaller effective cross sectional area may also be taken into

account by smaller loading and unloading slopes, as shown by

the dotted lines in Figure 4-2b.

FORCE

Figure 4-2a. Elasto - Plastic Response Curve

FORCE

Figure 4-2b. Elasto-Plastic Plus Buckling Response Curve
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5 . SOLUTION OF THE EQUATIONS OF MOTION

In the present section, a technique for the numerical time

integration of the equations of motion will be developed. Various

numerical approaches to the calculation of the dynamic response of

complex structural systems have been used in the past few years.

The varying degrees of success of each method has been related to

questions of accuracy and efficient implementation of digital

computers (i.e., the respective algorithms of some methods lead

to smaller computer running times than for other methods).

Two rather useful time integration schemes which have been

used successfully to solve complex structural dynamics problems
11 1 ?

are the Houbolt method and the Newmark Beta method. Houbolt's

method is based on the assumption of a cubic curve in the time

coordinate for the displacements of the moving body, considering

that four successive ordinates can be passed through by a cubic

curve. It is designed to be self -starting and unconditionally

stable. For sufficiently large time increments however, it does
1

3

lead to some artificial damping in the response.

The Newmark Beta method has been used successfully in a

variety of complex structural response studies, which involved

treatment of elasto-plastic behavior, yield hinges, and various

dynamic loadings such as shock or impact, vibration and earth-

quake motion. Some of the first applications are given in

Reference 14, although the method has been used often since

then. ^ The technique is rather straightforward step by step

approach, where the value of a parameter, 3, can be selected to

suit the requirements of the problem at hand, and also to give

unconditionally stable results. The net effect of 3 is to change

the form of the variation of acceleration in the time interval.

In the development to follow, the Newmark Beta method will

be adopted. We shall be concerned with the incremental equation

(2.27) which is written here for convenience. For the pth time

step :
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(5.1)MAii + K^P) Au = pt p ) + Q
(- P ')

where

q(P) = - [C fP>] T
S ( P) (5.2)

Since many degrees of freedom will have zero mass or inertia

associated with them, Equation (5.1) is partitioned as follows

M A ii +
~a

K (P)
aa

Au + K (P)
ag Au n = P (P) + 0 (P) = f (p)

a i a
(5.3)

K (P)
got

Au
-a

+ = f(P)
ig (5.4)

where the Au
a

involve degrees of freedom associated with masses,

and the Au^ involve degrees of freedom with no mass or inertias.

Equation (5.4) is next used to express Au^ in terms of Au
a

as

Au
g

(5.5)

When Equation 1 5 . 5 ) is substituted into Equation (5.3) and terms

are combined appropriately, the following equation results.

M ftP) + K (P} HP) = f(P)
~r ~

(5.6)

M = M
~a

Au (P)
a

ftP) = ftp) .

~a
f (P)
~g
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-1

K (P)
33

and what will be called the reduced stiffness matrix, K
r ,

is

K
~r

K
~aa (5.7)

The appropriate formulas relating the solution £^ p ^ to £
^ P

^(P'2) an(j force quantities can be derived by using a technique

described in Reference 15. This is accomplished here by first

writing Equation (5.6) for different time steps as follows

M + K (P)
£
(p) = f (p)

~ ~ ~ r
(5.8)

M
’

?
(p + 1

) + K (
p+1

) ^(P + 1
) = £ (P +1 ) (5.8a)

M PP_1) + Kr
(P-l)

e
(p-D = f (p-U (5.8b)

The following relations for velocity and displacement originally
12

suggested by Newmark are written next in terms of incremental

quantities, where the value of 3 can be anywhere between zero and

1/4.

pP*l)
.

|( P) +
h j-pp) +

J
(p+1) = h

j
(p)

* (\ - 6
)

where h is the time increment and

defined by

£
(P + 1) = U (P +1 ) . U (P)

~ ~a ~ a

Equations (5.9) and (5.10) can be

pp +
l)J (5.9)

h
2 d P) - Bh

2 dp+1 > (5.10)

it is recalled that £
p+^

(5.10a)

used to eliminate £

^

p ^ and

46



5

^

p ^ and obtain the relation,

(P + 1 )_2 ‘^P^+
\

('P_1A (5.11)

If both sides of Equation (5.11) are multiplied by M and

Equation (5.8) is used, one obtains

PP+1) .
|(p) „ h 2 ;(P) + Bh 2 U

M (P + l)
= h

2
f (p) -h

2
K (pM P) -8h

2

~r
-2K(P)|(P)\

(5.12)

Bh
2 MP+1 )-K^P

+ 1h (p+1)

j

f Bh
2
/f (P

" 1) -K
1

(P
' 1V P

" 1)

)

The terms in Equation (5.12) can be grouped conveniently, so that

for the pth time step, the following difference equation can be

obtained

D (p)pp) _ b (p
_ iq (p u

. Bh
2d p

" 2
h*- p

" 2 Teh‘ (p) + H f
(p-l)

+£ (p-2)

where D^ p ^ = M + 8h
2
K ^ p ^

~ ~ ~ X*

B^ p ) = M - (1-2 8) h
2K^

(5.13)

and the matrix K^p ^
,
has been calculated at the end of the previous

time step. Note that the mass matrix, M, has been considered con-

stant. This however, is not necessary, and if one wishes, one can

vary M and therefore use M^ p ). In fact with the right hand side

of Equation (5.13) known, one regards (5.13) as a system of equa-

tions to calculate ^ p -* e Au^P ^ at the pth time step. Since we

are using a matrix displacement method, the equations are banded,

and rather efficient elimination procedures have been derived.

^
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With the increment [au^^J = [Au^AuJ known,

vector, u, at the end of the pth time interval is

the displacement

U (P) = uCP' 1
) + au

(' P ')

. (5.14)

Knowing u^P-*, the results of Section 3 can be used to update the

compability matrix to c(P + ^, for the next time step. Also, using

appropriate relations in Section 2 one has

AS (p) = G (P) C (P) AU (P)

where Au^ p ^is ordered to be consistent with appropriately defined

matrices, and where G^P^ was calculated in the previous time step.

Using the result in Equation (5.15) the international forces to be

used for the next time step, S*-P
+ ^, are

S (P + 1) = S (P) + AS (P) (5.16)

where S^P-^ was calculated at the previous time step. With the

values of S^, the yield criteria are used to update to G^ p
+ ^^

for the next time step. We can therefore calculate C^P
+ ^ and

g(P + 1) a t- the encj 0 f the pth time step and hence can determine

K (P +1 )
=

[
C (P + 1

^] G^ P
+ 1

^ C
(' P+1 ') (5.17)

In these conditions the T matrix (Eqs. 3.7, 3.15) must be updated

as follows:

T (P + 1) = T (P) + at = + T (5.17a)

and similarly for the S matrix. Also, the philosophy of assembling

K^P-* is discussed at the end of this section.
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5.1 STARTING PROCEDURE

As an initial value problem, the initial displacement,
,

initial velocity, u^°-* = and the time history of applied

forces are necessary information. Since the difference equation,

(5.13), contains terms for three consecutive time intervals, it is

required to express the displacement u^
2

^ in terms of initial dis-

placement and initial velocity in order to start the procedure.

From Reference 15 we have in the present notation:

d(»„M

where E
(i)

MhC c°)
+ 6h

2
£
tl) +

/I
_g) h

2 ft°)

M -U -s) h
2^ - D (1)

- \ hV 15

p(l)_
K
(l)

p
(l)

. f
(o) = p(o)

_

K
(o)p(o)

~0t
~ ~ ~f -3

(5.18)

It is recalled that the quantity P is a prescribed function and

£^°^is the initial velocity. If the definition for and E^^
are used together with the relation = u^’*- u^°^ = Au^*° ~a -a ’

then Equation (5.18) can be written in the form

D (1MD_ ih 2>Yb (0) *
Z ~ I ~

Mh£r (0) + 3h
2
f

(?
-
B

)
h
2
f
(o)

(5.19)

The matrix K ( 1 )

r
is given by

(5.20)

where the matrices and represent initial values to be

used for the first time step. The quantity e Au^
0

^ taken as

zero since u^ ’ itself is the prescribed initial displacement.

Note also that = 0.

The solution has now been started. The difference Equation

(5.13) can now be used to continue the solution. For instance,

Equation (5.13) can be used to obtain writing
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(5.21)
5
(2)

!
(2) =B

(l)
5
a)_

?
(o)

5
(o)

+ 6h 2
^
f (2) + 1. 2 f(l)

+ f
(o)]

( 2 ) ( 2 ) f 2

)

In order to calculate E,
v

,
D v J and are needed and should be

calculated before the start of the second time step. We have

(2) = f (2)_ K
(2)

£ (2)
~ a ~f ~ B

,( 2 ) == M + 6 h K ( 2 )

(5.22)

(5.22a)

( 2 ) = ( 2 )

T
g ( 2 )

c ( 2 )

V.

(5.22b)

The matrices G^-
2

-* and S^-
2

-* are needed also, and are calculated

as follows.

From Equation (5.14)

u
(1) - A°> Au(»

(5.23)

Knowing u ^ ^
,
the compatibility matrix can be obtained for

the second time step. Also, from Equation (5.15) get

AS
(i) = cCDcttW 1 ) (5.24)

Use Equation (5.16) to write

s (2) = s
(l)

+ AS (!) (5.25)

where 0. With the values for the internal forces given by

S^, the yield criteria are used to decide on G*'
2

'* for the second
12 )time step. The matrix K v ' can then be determined using Equation

~ r
r 2 )

(5.22c). The quantity, f l J can also be determined using

Equations (5.22a) and (5.25).
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It is finally noted here that the development preceding and

leading to Equation (5.17) is a formalism. The actual details of

the implementation for programming purposes will use the approach

where the stiffness matrix for each individual element is obtained

first, and then all elements are assembled appropriately to obtain

the overall system matrix The details will be given in a

separate report.
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